TPPM0111 DUAL LOW-DROPOUT LINEAR REGULATOR

DWP HSOP PACKAGE

SLVS414 - DECEMBER 2001

Dual Voltage Output, 3.3 V ±3% and 1.5 V ±2%

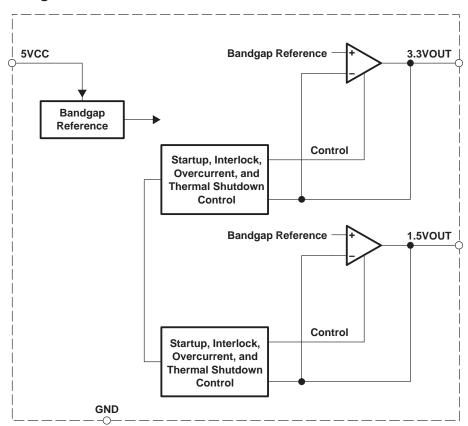
- 3.3-V Output Within 2 V of 1.5-V Output **Under All Conditions**
- 1.5-A Load Current Capability on 3.3-V Output
- 300-mA Load Current Capability on 1.5-V Output
- **Overcurrent Protection for Both Outputs**
- Thermally-Enhanced Packaging **Concept for Efficient Heat Management**
- **Thermal Shutdown to Protect Device During Excessive Power Dissipation**

(TOP VIEW) 10 NC \square 20 ☐ GND 2 19 NC \square □ NC NC \square 3 18 □ NC 4 17 □ NC 3.3VOUT □ ис NC 5 16 5VCC 6 15 \square NC 7 14 □ NC NC 8 13 1.5VOUT □□ NC 9 12 NC \square □ NC ☐ NC NC D 10 11

description

The TPPM0111 is a power source intended for use in systems that have a single 5-V input source and require dual, linearly-regulated, low-dropout voltage sources. The outputs must track within 2 V of each other during all conditions and modes of operation. Each output is protected against overcurrent conditions. In the event that one of the outputs is shorted to ground, the other output must maintain a voltage output differential of less than 2 V compared to the output with the abnormal condition.

The 3.3-V ±3% regulated output is capable of driving loads of 1.5 A, and the 1.5-V ±2% regulated output is capable of driving loads of 300 mA under all normal operating conditions. The device is available in a PowerPADTM thermally-enhanced package for efficient heat management, and requires a copper plane to dissipate the heat.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Instruments.

functional block diagram

Terminal Functions

TERMINA	۱L		DECORPTION
NAME	NO.	1/0	DESCRIPTION
NC	1–3, 5, 7, 9–12 13–17 [†] 18,9	I	No connection
3.3VOUT	4	0	3.3-V regulated output
5VCC	6	-1	5-V input
1.5VOUT	8	0	1.5-V regulated output
GND	20	ı	Ground

[†] These terminals are to be used for test purposes only, and are not connected in system applications. No signal traces should be connected to these terminals.

Table 1. Input Selection‡

INPUT CONDITION	3.3VOUT C	ONDITION	1.5VOUT CONDITION		
	V(3.3VOUT)	I(3.3VOUT)	V _{(1.5} VOUT)	I(1.5VOUT)	
Power up 0 V to 5 V	Within 2 V of 1.5VOUT	0 to overcurrent limit	0 V to 1.5 V	0 to overcurrent limit	
5 V	3.3 V ±3%	0 A to 1.5 A	1.5 V ±2%	0 mA to 300 mA	
Power down 5 V to 0 V	Within 2 V of 1.5VOUT	1.5 A to 0 A	1.5 V to 0 V	300 mA to 0 mA	
5 V	0 V	Up to 5.4 A	1.5 V	0 mA to 300 mA	
5 V	Less than 2 V	Don't care	0 V	Up to 1.08 A	
0 V	Within 2 V of 1.5VOUT	Don't care	1.5 V to 0 V	Don't care	

[‡] See Figures 2, 3, and 4.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)§

5-V input, V _(5VCC) (see Notes 1 and 2)	7 V
3.3-V output current limit, I _{L(3.3VOUT)}	5.4 A
1.5-V output current limit, I _{L(1.5VOUT)}	1.08 A
Continuous power dissipation, PD (see Note 3)	4 W
Electrostatic discharge susceptibility, V _(HBMESD)	2 kV
Operating ambient temperature range, T _A	0°C to 70°C
Storage temperature range, T _{stg}	. −55°C to 150°C
Lead temperature (soldering, 10 sec), T _(LEAD)	260°C

[§] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- 2. Absolute negative voltage values on these terminals should not be below -0.5 V.
- 3. Assumed correct thermal management technique implementation and ambient temperature of 25°C.

recommended operating conditions

		MIN	TYP	MAX	UNIT
5-V input, V _(5VCC)		4.7		5.3	V
Load capacitance, CL	$10 \text{ m}\Omega < \text{ESR}(CL) < 1 \Omega$			100	μF
Outset land sument 1	3.3VOUT	0		1.5	Α
Output load current, IO	1.5VOUT	0		300	mA
Ambient temperature, TA		0		55	°C

NOTES: 1. All voltage values are with respect to GND.

electrical characteristics, $T_A = 0^{\circ}C$ to 55°C, $C_L = 100 \,\mu\text{F}$, $V_{(5VCC)} = 5 \,\text{V}$ (unless otherwise noted)

The operating ratings specified below is interpreted as conditions that do not degrade the device's parametric or functional specifications for the life of the product.

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V ₍₅ VCC)	Input voltage			4.7	5	5.3	V	
I _(Q)	Quiescent supply cu	rrent	IO(3.3VOUT) = 1.2 A and IO(1.5VOUT) = 300 mA		1		mA	
			With no loads on outputs		600		μΑ	
	Outract land assumed		3.3VOUT = 3.3 V ±3%		1.5		Α	
lo	Output load current		1.5VOUT = 1.5 V ±2%		300		mA	
V(3.3VOUT)	3.3-V output		I _O = 1 mA to 1.2 A	3.23	3.33	3.43	V	
V _{(1.5} VOUT)	1.5-V output		I _O = 1 mA to 250 mA	1.47	1.5	1.53	V	
,,	Regulator drop-out	3.3VOUT	I _O < 1.2 A			1	.,	
V(DO)		1.5VOUT	I _O < 250 mA			2.8	V	
			3.3VOUT, I _L ↑, See Note 4	2.25	3	5.4	Α	
I(3.3VOUT)OC	Overcurrent protection	on	Hysteresis		500		mA	
			1.5VOUT, See Note 4	0.45	0.6	1.08	Α	
I(1.5VOUT)OC	Overcurrent protection	on	Hysteresis		200		mA	
CL	Load capacitance fo regulated outputs	r both				100	μF	
ESR(CL)	Equivalent series res	sistance				1	Ω	
V _{th} Threshold voltage		5 V ↓, I _O (3.3V _{OUT})= 1.2 A, I _O (1.5V _{OUT}) = 250 mA	3.4		4.2	V		
			Hysteresis		250		mV	
+	Thormal abutdown b	votoronia	Temperature ↑	150		180	°C	
T _{TSD} †	Thermal shutdown hysteresis		Hysteresis		15			

[†] Design targets only. Not tested in production.

NOTE 4: In the event of an overcurrent condition, the output should be a constant current limit such that the current never exceeds 360% of IO(TYP). Once the overcurrent condition is removed, the device returns to within the specified regulation limits.

electrical characteristics, $T_A = 0$ °C to 55°C, $C_L = 100 \mu F$, $V_{(5VCC)} = 5 V$ (unless otherwise noted)[†]

The following parametric requirements are applicable to both 3.3VOUT and 1.5VOUT when subjected to these transient tests.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _(OTL)	Output transient voltage limit	Voltage that load step can affect nominal output voltage (see Note 5)	-3%		3%	
IO(STEP)	Output load step current	See Note 5	0		I _{O(TYP)}	Α
IO(SLEW)	Output load step current slew rate	See Note 5 and 6			8	A/μs
t(STEP)	Output transient time limit	See Note 5		10		μs
	Power up overshoot	Maximum voltage overshoot allowed on either output when component begins regulation. Voltage transient time limit is t _(STEP) (see Note 5)			7	%

[†] Design targets only. Not tested in production..

NOTES: 5. Both outputs must maintain voltage regulation within ±3% of nominal, for a load step from 0 to IO(TYP) and from IO(TYP) to 0 A with a current slew rate of 8A/ms. Load may be toggled at a rate of 20 kHz typical. The outputs must return to the specified regulation limits within the specified time of 10 µs (typical).

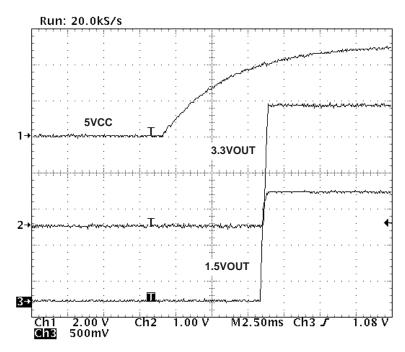
^{6.} Both linear regulators must be capable of regulating small ESR ceramic capacitors or aluminum electrolytic capacitors (see ESR specification).

thermal characteristics

	PARAMET	MIN	TYP	MAX	UNIT	
$R_{\theta JC}$	R _{0JC} Thermal impedance, junction-to-case					°C/W
$R_{\theta JA}$	Thermal impedance, junction-to-ambient	See Note 7			33	°C/W

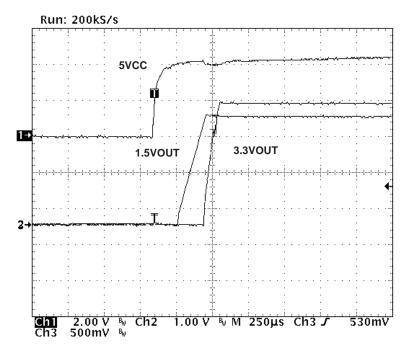
NOTE 7: See JEDEC PCB specifications for high-K and correct implementation for 150 LFM air flow.

TYPICAL CHARACTERISTICS **5VCC Bandgap Reference 3.3VOUT 0.1** μ**F 100** μ**F Bandgap** Reference Control Startup, Interlock, Overcurrent, and Thermal Shutdown Control **Bandgap Reference 1.5VOUT** $\textbf{0.1}~\mu\textbf{F}$ **100** μF Control Startup, Interlock, Overcurrent, and Thermal Shutdown Control GND


NOTE: The 100- μ F capacitor has: ESL = 3 nH and ESR = 0.5 Ω to 1 Ω .

Testing circuit includes 100- μ F aluminum capacitors which may be replaced with 10- μ F ceramic capacitors. Both capacitors must have equivalent series inductance ESL < 3 nH and equivalent series resistance ESR < 1 Ω .

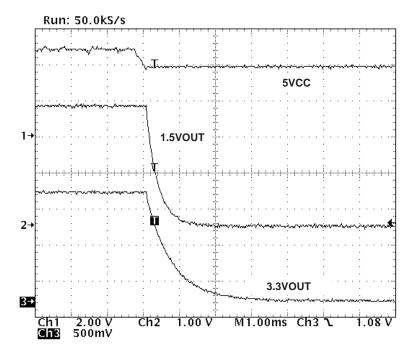
Figure 1. Test Circuit



TYPICAL CHARACTERISTICS

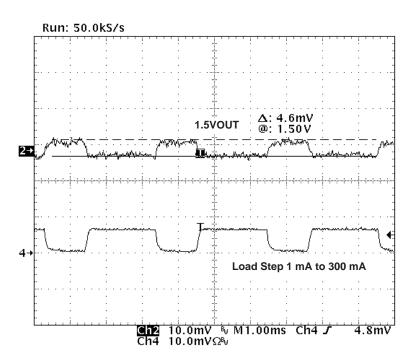
NOTE: The outputs track within 2 V in the power-up sequence.

Figure 2. Power-Up Sequence



NOTE: The outputs track within 2 V in the power-up and power-down sequence.

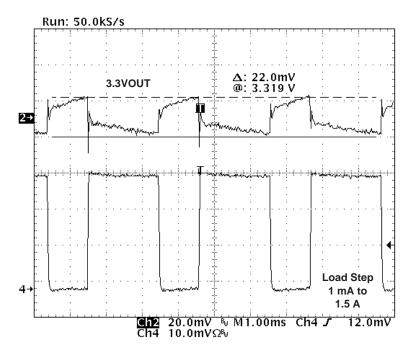
Figure 3. Power-Up Sequence With Fast Input Rise Time



TYPICAL CHARACTERISTICS

NOTE: The output tracks within 2 V in the power-down sequence.

Figure 4. Power-Down Sequence



NOTE: Load regulation on 1.5VOUT with a load step of 1 mA to 300 mA.

Figure 5. Load Regulation on 1.5VOUT

TYPICAL CHARACTERISTICS

NOTE: Load regulation on 3.3VOUT with a load step of 1 mA to 1.5 A

Figure 6. Load Regulation on 3.3VOUT

TYPICAL THERMAL CHARACTERISTICS

To ensure reliable operation of the device, the junction temperature of the output device must be within the safe operating area (SOA). This is achieved by providing a means to dissipate the heat generated from the junction of the output structure. There are two components that contribute to thermal resistance. They consist of two paths in series. The first is the junction-to-case thermal resistance, $R_{\theta,JC}$: the second is the case-to-ambient thermal resistance, $R_{\theta CA}$. The overall junction-to-ambient thermal resistance, $R_{\theta JA}$, is determined by:

$$R_{\theta,IA} = R_{\theta,IC} + R_{\theta CA}$$

The ability to efficiently dissipate the heat from the junction is a function of the package style and board layout incorporated in the application. The operating junction temperature is determined by the operating ambient temperature, T_A, and the junction power dissipation, P_J.

The junction temperature, T_J , is determined by the following thermal equation:

$$T_J = T_A + P_J (R_{\theta JC}) + P_J (R_{\theta CA})$$

$$T_J = T_A + P_J (R_{\theta JA})$$

 $T_J = T_A + P_J (R_{\theta,JA})$

This particular application uses the 20-pin DWP power pad package with a standard lead frame with a dedicated ground terminal. Using a multilayer printed-circuit board (PCB), the power pad is mounted as recommended in the TI packaging application. The power pad is electrically connected to the ground plane of the board through a dedicated ground pin and the die mount power pad. This provides a means for heat spreading through the copper plane associated within the PCB (ground layer). The thermal resistance from junction to ambient, R_{B.I.A}, is dependent of several factors, the implemented method of package attachment to the heat spreading material and the air flow in the system application.

APPLICATION INFORMATION

packaging

To maximize the efficiency of this package for application on a single layer or multilayer PCB, certain guidelines must be followed.

The following information is to be used as a guideline only. For further information, refer to the PowerPAD concept implementation document.

multilayer PCB

The following are guidelines for mounting the PowerPAD IC on a multilayer PCB with a ground plane.

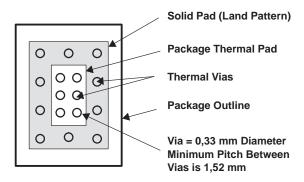


Figure 7. Package and Land Configuration for a Multilayer PCB

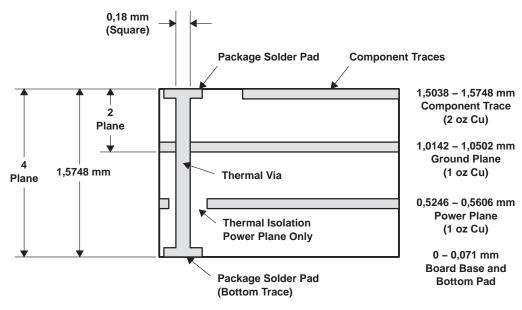


Figure 8. Multilayer Board (Side View)

APPLICATION INFORMATION

In a multilayer board application, the thermal vias are the primary method of heat transfer from the package thermal pad to the internal ground plane. The efficiency of this method depends on several factors (die area, number of thermal vias, thickness of copper, etc.). Consult the PowerPAD Thermally Enhanced Package Technical Brief.

single layer PCB

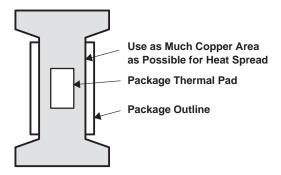
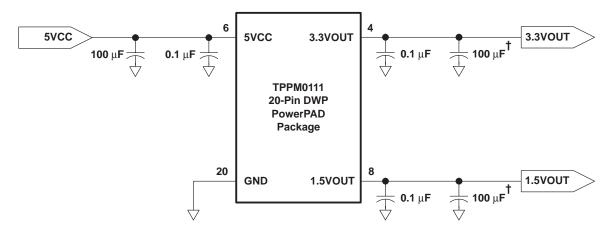



Figure 9. Land Configuration for Single-Layer PCB

Layout recommendation is to utilize as much copper area for the power management section of a single-layer board as possible. In a single-layer board application, the thermal pad is attached to a heat spreader (copper areas) by using a low thermal impedance attachment method (solder paste or thermal-conductive epoxy). In both of these cases, it is advisable to use as much copper traces as possible to dissipate the heat.

IMPORTANT

If this attachment method is not implemented correctly, this product will not operate efficiently. Power dissipation capability will be adversely affected if the device is incorrectly mounted onto the circuit board.

[†] It is recommended that the capacitors on the outputs (100 μ F) have a low ESR < 1 Ω .

These stabilizing capacitors must be placed in close proximity of their corresponding output terminals for optimal performance.

Figure 10. Application Schematic

i.com 27-Feb-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TPPM0111DWP	ACTIVE	SO Power PAD	DWP	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TPPM0111DWPG4	ACTIVE	SO Power PAD	DWP	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TPPM0111DWPR	ACTIVE	SO Power PAD	DWP	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TPPM0111DWPRG4	ACTIVE	SO Power PAD	DWP	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

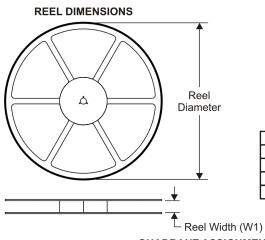
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

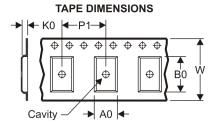
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

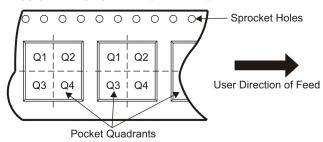
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

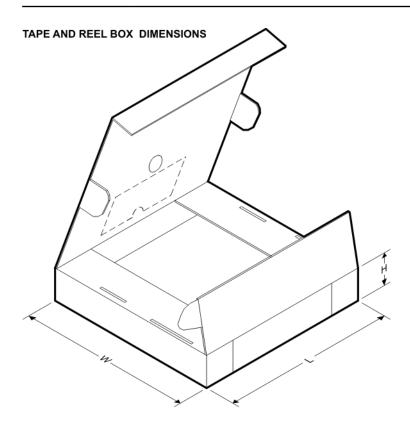

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

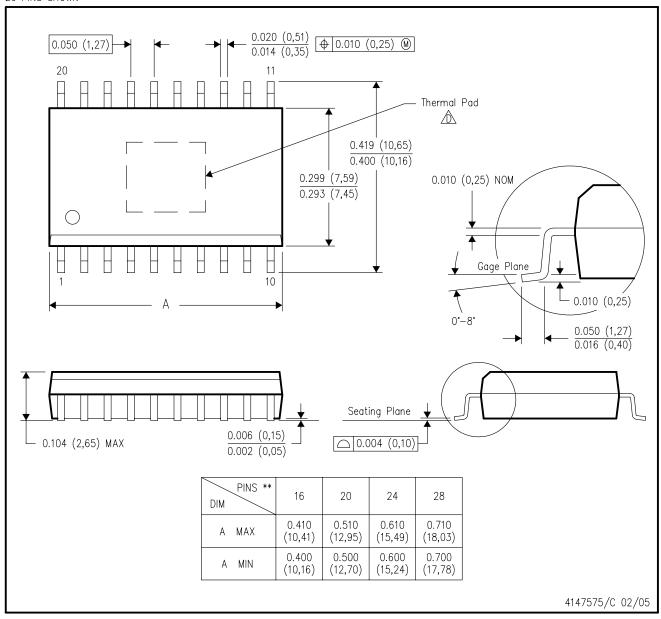

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device		Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPPM0111DWPR	SO Power PAD	DWP	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPPM0111DWPR	SO PowerPAD	DWP	20	2000	346.0	346.0	41.0

DWP (R-PDSO-G**)

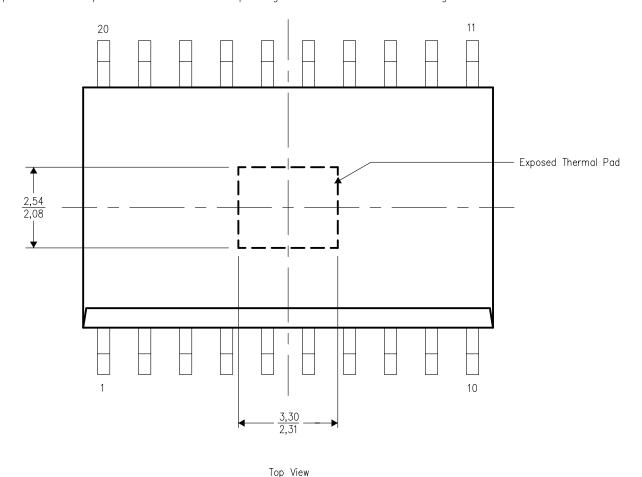
PowerPAD™ PLASTIC SMALL-OUTLINE PACKAGE

20 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com. See the product data sheet for details regarding the exposed thermal pad dimensions.

PowerPAD is a trademark of Texas Instruments.


THERMAL PAD MECHANICAL DATA DWP (R-PDS0-G20)

THERMAL INFORMATION

This PowerPAD $^{\text{TM}}$ package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated